Dougherty Valley HS Chemistry - AP Electrochemistry - NChO Practice

Worksheet #6

Name: Period: Seat#:

Directions: Show all work and/or annotate with an AP Chem level explanation for non-math answers. Use binder paper as needed.

1985 NChO Exam

43. The rxn taking place in a dry cell may be written $Zn(s) + 2H^{+}(aq) + 2MnO_{2}(s)$

$$\rightarrow$$
 Zn²⁺(aq) + 2MnO(OH).

The battery is to be discarded after 2.00 g of zinc is converted to $\text{Zn}^{2+}(\text{aq})$. If 0.0100 amperes of current is continuously drawn, for how many seconds can the battery operate?

- a) $[(65.4)(0.0100)] \div [(2)(96,500)]$
- b) $[(2)(96,500)] \div [(0.0100)(65.4)]$
- c) $[(2)(65.4)(96,500)] \div (0.0100)$
- d) $[(2.00)(2)(96,500)] \div [(65.4)(0.0100)]$
- **44.** $\operatorname{Sn}^{4+} + 2 \operatorname{Fe}^{2+} \rightarrow 2 \operatorname{Fe}^{3+} + \operatorname{Sn}^{2+}$
 - a) Sn⁴⁺ is the oxidizing agent and Fe²⁺ is the reducing agent.
 - b) Sn⁴⁺ is the reducing agent and Fe²⁺ is the oxidizing agent.
 - c) Sn⁴⁺ is the reducing agent and Fe³⁺ is the oxidizing agent.
 - d) Fe^{3+} is the oxidizing agent and Sn^{2+} is the reducing agent.
- **45.** Given the standard reduction potentials

$$Cu^{2+} + 2e^{-} \rightleftharpoons Cu(s)$$
 $E^{\circ} = +0.34$ Volt

$$Al^{3+} + 3e^{-} \rightleftharpoons Al(s)$$
 $E^{\circ} = -1.66$ Volt

Calculate the standard voltage for the reaction

$$2Al(s) + 3Cu^{2+} \rightarrow 2Al^{3+} + 3Cu(s)$$

- a) -1.22 Volt
- b) +2.00 Volt
- c) +4.34 Volt
- d) +5.86 Volt

1986 NChO Exam

46. Given the standard electrode (reduction) potentials:

$$Cd^{2+}(aq) + 2e^{-} \rightarrow Cd(s)$$
 $E^{\circ} = -0.40 \text{ v}$

$$Ag^{+}(aq) + e^{-} \rightarrow Ag(s)$$
 $E^{\circ} = +0.80 \text{ v}$

What would be the E° for a cadmium-silver cell?

- a) 0.4 v
- b) 0.5 v
- c) 1.2 v
- d) 2.0 v

- **48.** A current of 10.0 amperes flows for 2.00 hours through an electrolytic cell containing a molten salt of metal x. This results in the decomposition of 0.250 mole of metal x at the cathode. The oxidation state of x in the molten salt is
 - a) 1+
- b) 2+
- c) 3+
- d) 4+
- **49.** In a voltaic cell, oxidation occurs at the
 - a) anode
 - b) cathode
 - c) salt bridge
 - d) electrode at which electrons enter from the outside
- **50.** The free energy change for the chemical reaction that occurs in a voltaic cell when it is discharging and producing an electric current must be
 - a) positive
- b) negative
- c) zero
- d) unpredictable

1988 NChO Exam

34. In the reaction

$$SO_2 + 2 H_2S \rightarrow 3 S + 2 H_2O$$

- a) sulfur is oxidized and hydrogen is reduced
- b) sulfur is reduced and there is no oxidation
- c) sulfur is reduced and hydrogen is oxidized
- d) sulfur is both reduced and oxidized
- **35.** Which group among the representative (maingroup) elements contains the most powerful oxidizing agent?
 - a) group I
- b) group III
- c) group VI
- d) group VII

Dougherty Valley HS Chemistry - AP Electrochemistry - NChO Practice

36. The following standard electrode (reduction) potentials refer to aqueous solution at 25°C.

$$Ni^{2+}(aq) + 2e^{-} \rightleftharpoons Ni(s)$$
 $E^{\circ} = -0.25 \text{ V}$

$$E^{\circ} = -0.25 \text{ V}$$

$$Cu^{2+}(aq) + 2e^{-} \rightleftharpoons Cu(s)$$
 $E^{\circ} = +0.34 \text{ V}$

$$E^{\circ} = +0.34 \text{ V}$$

$$Fe^{3+}(aq) + e^{-} \rightleftharpoons Fe^{2+}(aq)$$
 $E^{\circ} = +0.77 \text{ V}$

$$\mathbf{E}^{\circ} - + 0.77 \, \mathbf{V}$$

What is the standard potential for the reaction

$$Cu^{2+}(aq) + Ni(s) \rightleftharpoons Cu(s) + Ni^{2+}(aq)$$
?

- a) 0.09 V
- b) 0.59 V
- c) 0.86 V
- d) 1.02 V
- **37.** Which ion, in solution, can be oxidized by appropriate chemical means but also can be reduced by a different chemical reaction?
 - a) Fe²⁺
- b) F
- c) CO_3^{2-}
- d) NO_3^-

1989 NChO Exam

Zinc reacts with dilute acid to produce H₂ and Zn²⁺ but silver does not liberate hydrogen from an acid. This information enables one to predict that

a)
$$H_2(g) + Zn^{2+}(aq) \rightarrow 2H^+(aq) + Zn(s)$$

b)
$$2 \text{ Ag(s)} + \text{Zn}^{2+}(\text{aq}) \rightarrow 2 \text{Ag}^{+}(\text{aq}) + \text{Zn(s)}$$

c)
$$2 \text{ Ag}^+(aq) + \text{Zn}(s) \rightarrow 2\text{Ag}(s) + \text{Zn}^{2+}(aq)$$

d)
$$2 \text{ Ag(s)} + 2H^+(aq) \rightarrow H_2(g) + 2 \text{ Ag+(aq)}$$

50. In the electroplating of silver from cyanide solution the cathode reaction is

$$Ag(CN)_{2}^{-}$$
 (aq) + e- \rightarrow $Ag(s)$ + 2CN⁻ (aq)

How many grams of silver should be deposited by a current of 4.50 amperes in 28.0 minutes?

- a) 0.141 g
- b) 4.23 g
- c) 8.45 g
- d) 12.53 g

1990 NChO Exam

- For the reaction shown below, which statement is true? $2\text{Fe} + 3 \text{CdCl}_2 \rightleftharpoons 2 \text{FeCl}_3 + 3\text{Cd}$
 - a) Fe is the oxidizing agent
 - b) Cd undergoes oxidation
 - c) Cd is the reducing agent
 - d) Fe undergoes oxidation

19. What is the potential in volts for the spontaneous reaction between the Ag/Ag²⁺ and Zn/Zn²⁺ halfcells?

$$Zn^{2+} + 2e^{-} \rightarrow Zn \quad E^{\circ} = -0.763V$$

$$Ag^{+} + 1e^{-} \rightarrow Ag \quad E^{\circ} = 0.799V$$

- a) -2.361
- b) -1.562
- c) 1.562
- d) 2.361

1991 NChO Exam

Given the standard reduction potentials,

$$Cr^{3+} + 3e^{-} \rightarrow Cr -0.74 \text{ V}$$
 $Pb^{2+} + 2e^{-} \rightarrow Pb -0.13 \text{ V}$

what is the standard potential, E°, for the reaction?

$$2 \text{ Cr} + 3 \text{ Pb}^{2+} \rightarrow 2 \text{ Cr}^{3+} + 3 \text{ Pb}$$

- a) 0.61 V
- b) 0.87 V
- c) 1.09 V
- d) 1.87 V

Half-cell reaction	E°	
$Cu^{2+}(aq) + 2e^{-} \rightarrow Cu(s)$	-0.25 V	
Ni^{2+} (aq) + 2e ⁻ \rightarrow $Ni(s)$	+0.34 V	

- **65.** When two half-cells are connected using a salt bridge,
- a) galvanic cell will result - Cu is the cathode
- galvanic cell will result Cu is the anode b)
- electrolytic cell will result Ni is the cathode c)
- electrolytic cell will result Ni is the anode d)

1992 NChO Exam

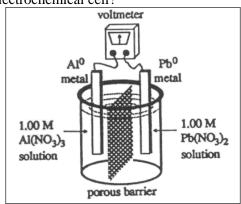
- Corrosion of ships can be minimized by attaching **58.** a "sacrificial plate" of zinc to the hull. This plate corrodes instead of the steel of the ship because
 - a) the zinc behaves as a cathode, and is oxidized to zinc ions.
 - b) the zinc behaves as an anode, and is oxidized to zinc ions.
 - c) the steel hull behaves as a cathode, and is reduced to iron ions.
 - d) the steel hull behaves as an anode, and is reduced to iron ions.

Dougherty Valley HS Chemistry - AP Electrochemistry - NChO Practice

- **59.** A spoon is made the cathode in an electroplating apparatus containing a AgNO₃ solution. How many grams of Ag will be plated on the spoon if a current of 2.00 A is passed through the apparatus for 1.90 min.?
 - a) 0.255 g
- b) 0.150 g
- c) 0.128 g
- d) 0.0638 g
- **60.** A cell is set up using the following reactions:

$$Zn\mid Zn^{2+}\left(0.5M\right)\parallel Ni^{2+}\left(0.1\;M\right)\mid Ni$$

$$Ni^{2+} + 2e^{-} \rightarrow Ni \quad E^{\circ} = -0.250 \text{ V}$$


$$Zn^{2+} + 2e^- \rightarrow Zn$$
 $E^{\circ} = -0.763 \text{ V}$

What is the voltage of the cell?

- a) -0.513 V
- b) -1.013 V
- c) 0.492 V
- d) 0.513 V

1993 NChO Exam

- **67.** How many grams of Co will be deposited when a solution of cobalt(II) chloride is electrolyzed with a current of 10. amp for 109 minutes?
 - a) 0.66
- b) 4.0
- c) 20
- d) 40
- **66.** What voltage will be produced by the electrochemical cell?

Reduction Potentials

$$Pb^{2+} + 2e^{-} \rightarrow Pb -0.13 \text{ V}$$

$$A1^{3+} + 3e^{-} \rightarrow A1 -1.68 \text{ V}$$

- a) 2.97V
- b) 1.55V
- c) -1.81V
- d) -2.97V

1994 NChO Exam

46. If solid nickel metal were added to separate aqueous solutions each containing 1M concentrations of Ag⁺, Cd²⁺, and Sn²⁺ ions, how many metals would plate out, based on the given standard reaction potentials?

Standard Reduction Potentials

Ag^+/Ag	0.799 V
Sn^{2+}/Sn	-0.141 V
Ni^{2+}/Ni	-0.236 V
Cd ²⁺ /Cd	-0.400 V

- a) zero
- b) one
- c) two
- d) three
- **48.** Solutions of Ag⁺, Cu²⁺, Fe³⁺ and Ti⁴⁺ are electrolyzed with a constant current until 0.10 mol of metal is deposited. Which will require the greatest length of time?
 - a) Ag⁺
- b) Cu²⁺
- c) Fe³⁺
- d) Ti⁴⁺

1996 NChO Exam

43. Use these reduction potentials to determine which one of the reactions below is spontaneous.

	-	
Reaction	Reduction Potentials, E°	
$Ag^+ + e^- \to Ag$	0.800 V	
$Pb^{2+} + 2e^{-} \rightarrow Pb$	- 0.126 V	
$V^{2+} + 2e^- \rightarrow V$	- 1.18 V	

- a) $V^{2+} + 2 Ag \rightarrow V + 2 Ag^+$
- b) $V^{2+} + Pb \rightarrow V + Pb^{2+}$
- c) $2 Ag^+ + Pb^{2+} \rightarrow 2 Ag + Pb$
- d) $2 \text{ Ag}^+ + \text{Pb} \rightarrow 2 \text{ Ag} + \text{Pb}^{2+}$
- **44.** It is possible to produce chlorine gas by electrolyzing any of these chlorine-containing compounds under the proper conditions. Which compound will require the smallest number of coulombs to produce one mole of chlorine?
 - a) Ca(OCl)₂
- b) NaClO₂
- c) KClO₃
- d) $Mg(ClO_4)_2$

Dougherty Valley HS Chemistry - AP Electrochemistry - NChO Practice

1997 NChO Exam

43. What is the function of H_2O_2 in this reaction?

$$6H^+ + 2MnO_4^- + 5H_2O_2 \rightarrow 2Mn^{2+} + 5O_2 + 8H_2O$$

- a) catalyst
- b) reducing agent
- c) oxidizing agent
- d) inhibitor
- **44.** How much hydrogen is produced from the electrolysis of water in the same time that 2.2 L of oxygen is formed?
 - a) 0.14 L
- b) 1.1 L
- c) 2.2 L
- d) 4.4 L
- **45.** Which of these changes will cause the value of the potential for this half-reaction to be less negative? $(E^{\circ} = -0.28 \text{ V for the reaction.})$

$$Co^{2+}(aq) + 2e^{-} \rightarrow Co(s)$$

- a) increasing the amount of solid Co
- b) decreasing the amount of solid Co
- c) increasing the concentration of Co²⁺(aq)
- d) decreasing the concentration of Co²⁺(aq)

1998 NChO Exam

40. For this reaction, $E^{\circ}_{cell} = 0.79 \text{ V}$.

$$6I^{-}(aq) + Cr_2O_7^{2-}(aq) + 14H^{+}$$

$$\rightarrow 3I_2\left(aq\right) + 2Cr^{3+}(aq) + 7H_2O(aq)$$

Given that the standard reduction potential for $Cr_2O_7^{2-}(aq) \rightarrow 2Cr^{3+}(aq)$ is 1.33 V, what is E°_{red} for $I_2(aq)$?

- a) +0.54 V
- b) -0.54 V
- c) +0.18 V
- d) -0.18 V
- **41.** What is the product formed at the anode in the electrolysis of 1.0 M NaNO₃(aq)?
 - a) $H_2(g)$
- b) $NO_2(g)$
- c) $O_2(g)$
- d) Na(s)
- **42.** Which of these ions is the best reducing agent?

Standard Reduction Potentials, E°				
$Fe^{3+}(aq) + e^{-} \rightarrow Fe^{2+}(aq)$	+0.77 V			
$Cu^{2+}(aq) + e^{-} \rightarrow Cu^{+}(aq)$	+0.15 V			

- a) Fe³⁺
- b) Fe²⁺
- c) Cu²⁺
- d) Cu+

43. $Zn(s) + Cl_2(g, 1 \text{ atm})$

$$\rightleftharpoons$$
 Zn²⁺(aq, 1 M) + 2Cl⁻(aq, 1 M)

An electrochemical cell based on this reaction has a cell voltage, E° , of 2.12 V. Which change could make the cell voltage greater than 2.12 V?

- a) add more Zn(s)
- b) add more Cl⁻(aq) ions
- c) decrease the concentration of Zn²⁺(aq) ions
- d) decrease the partial pressure of Cl₂

J (Et					
d (24	72) C				O (09
J(14	44) D	A (44	48) D	B (66)	A (68
A (04	43) B	43) D	J (97	O(78	a (8č
866 I	∠66 <i>I</i>	966I	⊅66I	£66I	766I
			A (TE	30) B	
			36) B	A (64	42) B
92) B	D (61	O (08	32) D	J (84	A (44
A (74	I (7 I	J (67	34) D	J (97	43) D
I66I	066 I	686I	886I	986I	\$86I
					Answers